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INTRODUCTION 

The study of electrochemical processes which involve 
two o r  more elementary react ion s teps  i s  a t  present of increased 
i n t e r e s t  because of the  development of f u e l  c e l l s .  The direct 
oxidation of hydrocarbons i s  a case i n  point s ince along w i t h  
charge t ransfer ,  surface processes such as adsorption, 
desorption and possible conversion may take place. I n  addition 
t o  the  above t h e  e f f e c t s  of m a s s  t r a n s f e r  may have t o  be taken 
i n t o  account. The ana lys i s  of such systems i s  d i f f i c u l t  since 
most s tudies  a r e  undertaken w i t h  a l l  of t h e  processes occurring 
more O P  l e s s  simultaneously.' T h u s  the  surface react ions are 
all coupled with a d i f fus ion  step.  Theoretical  ana lys i s  i s  
normally carr ied out under conditions e i t h e r  o f  semi- inf ini te  
l i n e a r  d i f fus ion  o r  of known convection with a l l  of t h e  rate 
surface constants appearing as grouped constants i n  t h e  
r e su l t i n<  expressions. Separation of parameters i s  d i f f i c u l t  
and normally cannot be done without some degree of ambiguity. 
The work of  Matsuda and Delahayl i s  a n  excellent example 
o f  t he  grouped parameter problem when relaxat ion techniques 
a r e  employed. In  addi t ion  the  various mechanisms which have 
been pi7oposed for t h e  hydrogen evolution reac t ion  and which 
a l l  appear t o  provide at least  p a r t i a l  explanations f o r  t h i s  
process a r e  by now c l a s s i c  examples of parameter separation 
d i f f i c u l t i e s .  

which there  i s  a t  l e a s t  adsorption coupled w i t h  charge t r ans fe r  
such as the hydrogen evolution reaction, re laxat ion techniques 
have been extensively used. 
because they allow t h e  quant i ty  of hydrogen adsorbed a t  a given 
overvoltage t o  be evaluated. Charging curve2-12, i m  edance 
measurements13-' and t h e  voltage sweep have 
been employed. The determination o f  k i n e t i c  parameters using 
these methods i s  not, however, done without some degree of 
ambiguity, although t h e  introduction of time as a var iable  
noyrnal1;- renders t h e  s i t u a t i o n  less complex s ince  the number of 
simultaneous equations increases.  

In  order t o  study electrochemical react ions i n  

The main reason f o r  t h e i r  use i s  

The f a c t ,  t h e t  t h e  f i r s t  s t e p  i n  the oxidation of 
geseous ree-tar?ts i s  normally one of adsorption allows the 
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poss ib i l i t y  of separat ing t h i s  s t e p  from those succeeding it 
i n  time. 
and possible conversion processes. 

T h i s  would allow independent ana lys i s  of  t he  adsorption 

Such a technique necessar i ly  involves time as 
a var iable  thus  p e m i t t i n g  a dynamic ana lys i s  o f  t h e  react ion 
steps.  It i s  thus a re laxa t ion  technique. 

The d i r e c t  electrochemical oxidat ion of hydrocarbons 
i s  receiving much a t t e n t i o n  at th present  Probably 
the most important s t e p  i n  t h e  oxidation and that most studied, 
i s  adsorption followed by possible  conversion. Thus the 
aspect of c a t a l y s i s  i n  an electrochemical react ion i s  increasingly 
important. It i s  therefore of i n t e r e s t  t o  be able  t o  e lucidate  
the process of adsorption so that the  demand for new ca ta lys t  
mater ia ls  t o  be used i n  fue l  c e l l s  may be, a t  l e a s t  i n  par t ,  m e t .  

method whereby the reac t ion  s teps  preceeding charge t r ans fe r  and 
desorption may be separated i n  t h e .  
method w i l l  be given and an example o f  i t s  appl ica t ion  w i l l  be 
maae i n  a preliminary study of t he  adsorption of ethane and platinum. 

It i s  the  purpose of t h i s  communication t o  describe a 

A t heo re t i ca l  ana lys i s  o r  the  

THEOFBTICAL 

I n  order  t o  experimentally separate the reac t ion  steps 
i n  the oxidation of a gaseous reactant  it i s  necessary t o  a l l o w  
the  electrode t o  pe r iod ica l ly  be i n  the  presence of  gas then 
i n  the e lec t ro ly te .  This may be car r ied  out i n  the following 
way. The electrode under study i s  placed i n  a la rge  c i r cu la r  
insulated d i sc  (making up only a s m a l l  por t ion  of this t o  avoid 
edge e f f e c t s ) .  The d i s c  may then be ro ta ted  thus allowing the 
electrode t o  spend p a r t  o f  a ro t a t ion  i n  the  presence of t h e  
gaseous reactant  and e l e c t r i c a l l y  insu la ted  from the polar izat ion 
c i r c u i t  and the rest of the r o t a t i o n  immersed i n  the l iqu id  where 
charge t r ans fe r  and desorpt ion may take place. 

During the  adsorption phase the electrode i s  covered 
w i t h  a th in  film of l i q u i d  t h e  thickness o f  which may be varied. 
There now e x i s t s  a diff 'usion coupled adsorption process. 
methods by which this occurs may be envisaged. One i s  that i n  
which t h e  l i q u i d  film i n i t i a l l y  contains no gas so  t h a t  t h i s  
must f i r s t  d isso lve  in the  e l e c t r o l y t e  then d i f fuse  through the 
film w i t h  subsequent adsorption on the  electrode surface. This 
case w i l l  be  analyzed here.  The second i s  t o  introduce on the 
electrode surface e l e c t r o l y t e  previously saturated w i t h  t h e  gas 
under study. 

Adsorption then immediately starts w i t h  a d i f fus ion  
layer gradually being created in t h e  film. This case w i l l  be 
analyzed elsewhere. 

The model used f o r  the  mathematical analysis  given 
below i s  as follows. The f i lm  o f  e lec t ro ly t e  i s  of thickness 
6 such tha t  f i n i t e  linear d i f fus ion  i s  the sole mode of mass 
t r ans fe r .  The d i s so lu t ion  of gas In t he  f i l m  occurs at  
x = 0 and is  considered i n f i n i t e l y  rapid, i .e .  a concentration 
s t ep  M e t i o n  of t ime exists a t  the gas l i qu id  interface.  

Two 
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The adsorption process occurs a t  x = 6 following Langmui~l 
k ine t i c s  which appears t o  hold f o r  many adsorption processes 
i n  electrochemistry. The case i n  which Temkin k ine t i c s  
p reva i l  w i l l  be analyzed elsewhere. 
process i s  assumed t o  be given by: 

Thus the adsorption 

I n  order t o  take t h e  diff 'usion process i n t o  
\ account t he  Fick equation wr i t ten  f o r  l i n e a r  diffusion w i l l  be used. 
! 

\ 
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ac (x , t )  - D d 2 C ( X , t )  
a t  ax2 

This equation must be integrated using equation (1) from which 
t h e  pr incipal  boundary conditions w i l l  be derived. The use of 
(1) as wri t ten p roh ib i t s  the obtention of a closed form solut ion.  
This work i s  now i n  progress. Two cases which allow (1) t o  be 
simplified may be envisaged. If r(t) << rm, then: 

= karm C ( 6 , t )  - k d r ( t )  
d t  

- T h i s  s implif icat ion i s  probably f a i r l y  reasonable as far a s  
hydrocarbons a r e  conceimed s ince t h e i r  s o l u b i l i t y  in the 
aqueous solutions normally employed i n  fuel c e l l s  i s  s m a l l .  

Further, t h e  experimental technique, which i s  
described i n  more d e t a i l  below, allows measurements t o  be 
made a t  times s u f f i c i e n t l y  short  so  t h a t  t h i s  s implif icat ion 
may be LYulfilled. I f ,  I n  addi t ion the  adsorption process i s  
s u f f i c i e n t l y  rapid,  then: 

( 3 )  

This, of  course, i s  probably not t r u e  f o r  hydrocarbon 
adsorption, but t h e  case i s  of general i n t e r e s t  and w i l l  be 
presented here. 

a )  Low coverage, rapid adsorption: %e integrat ion of ( 2 )  i s  
ca r r i ed  out using the following i n i t i a l  and boundary conditions.  

X = O , t r O  C ( O , t )  = Go 

I X = 6 , t = 0  C(f3,t) = 0 

D X = 6 ,  t > O  C ( 6 , t )  = E r(t) 
Since t h e  surface concentration r( t)  i s  a function of the f lux  
of t h e  d i f f u s h g  species a t  the electrode surface, then: I 
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t a C ( 6 , t )  dt 
ax r(t) = D s, 

The use  of Laplace transformation leads to :  

( 5 )  

where y = s1 / /  '/D1 ' and X = Dy/Ks. 

This equation represents,  i n  transformed s ta te ,  
the complete so lu t ion  of equation ( 2 )  f o r  these pa r t i cu la r  
i n i t i a l  and boundary conditions. It can i n  pr inc ip le  be used 
i n  t h i s  f o r m  as was shown by Wynen4' i n  a general  study. 
transformation may be car r ied  out by a method which has already 
been described elsewhere4'. If, f o r  a given f i l m  thickness 
observation i s  made at r e l a t i v e l y  short  times, then: 

Inverse 

and 

cosh y 6  = ~Fnh y6 = 0 . 5  exp y 6  

Inverse t rans  f o m a t  ion  then gives : 

(9) 

Equation ( 9 )  ind ica t e s  t ha t  there  i s  a ce r t a in  time required 
before the adsorbant reaches the electrode surface since no 
adsorption parameter a r e  present i n  t he  expression. The time 
congtant for t h i s  process i s  approximately given by, T = 6'/4D. 
It is t o  be noted that this r e su l t  is the  same as would be 
obtained if the  l i q u i d  f i lm were of i n f i n i t e  thickness,  thus 
a t t r i b u t i n g  t o  t h e  genera l i ty  o f  t he  so lu t ion  given by equation ( 6 )  

times a r e  now longer,  then, transforming 76) f o r  r ( s ) :  
If f o r  t h e  same f i lm thickness iven above observation 

(10) 1 KC x r(s) = 0 
s [ cosh y 6  + sinh y 6  

and assuming that:  



I 
- 7 1  - 

and 
I 
i 

(Y6I3 sinh y6 = y 6  + 
5 

cosh y6 = 1 + 0' 
2 

inverse transformation may be carr ied out giving: 
I 

Taking the first term of  the s e r i e s  given i n  (11) and using ( 1 2 )  
as is ,  one obtains:  

\ 
\ 

(14) 2DT ) r(t)  = KCo (1 - exp - 6 2  + 2K6 

P. s t i l l  simpler Sxpression may be obtained when t h e  f i r s t  
term o f  both o f  t h e  s e r i e s  given i n  (11) and ( 1 2 )  are used. 

Thus : 

(15)  DT '1 r(t) = KCo (1 - exp - m) 

Equations ( 9 )  and (13) a r e  t h e  complete solut ions 
f o r  t h i s  pa r t i cu la r  d i f fus ion  adsorption process. They 
progressively character ize  a pure d i f fus ion  then a d i f fus ion  - 
adsorption process. 

seen t h a t  the f i r s t  exponential term contains only d i f fus ion  
parameters, where as t h e  second contains both d i f fus ion  and 
adsorption parameters. 
f i lms equation (3) i s  va l id  f o r  o n l y  very short  times, 
becoming effect ively nonexistant f o r  the thinnest  f i lms. 
Equation ( i3)  may conveniently be replaced by ( 1 4 )  and then 

t h a t  t 5e  electrode surface becomes saturated w i t h  t h e  adsorbing 
species more r a p i d l j  as t h e  e l ec t ro ly t e  f i l m  becomes smaller. 

b )  LDx coverage, f i n i t e  adsorption rate: This case i s  of 
g rea t e r  i n t e r e s t  here s ince it has been reported47 t h a t  t h e  

in t eg ra t e  equation (2) t he  same i n i t i a l  and boundary conditions 
as  those used previousl;; w i l l  be assumed t o  be va l id ,  except 
for the  following: 

The t r a n s i t i o n  between these two behaviors 
I 

i s  pa r t i cu la r ly  evident i n  equation (13) where it may be 

For r e l a t i v e l y  thinner and thinner  

1 (15) f o r  the th.i.nner films indicating, as might be expected 

, rate of hydrocarbon adsorption i s  r e l a t i v e l y  slow. To 

I 

1 
I ' I  
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In  addition, equation ( 5 )  i s  a l so  employed. 

Laplace transformation results i n  an e F a t i p n  
form as t h a t  given i n  ( 6 )  where y = s1 =/D1 

of  t he  same 
and, 

Inverse transformation using the  s implif icat ions given i n  
( 7 )  and ( 8 )  r e s u l t s  i n  equation ( 9 ) ,  which i s  t o  be expected. 
Using the series expansions given i n  (11) and ( 1 2 )  the  following 
equs 1. ion r e s u l t  P : 

where I 
6D2 + 3Dti2kd + 6D6Kkd 

) z  - 
n 6D6* + Kkdtj3 + 2 L '  6Db2 + Kkd63 

I 
i 

- 24D2kd ,1/2 

i 
i 

3Dtj2 + Kkd63 

Fina l ly  the s e r i e s  expansion used t o  obtain equation (15) gives: 

It may be seen t h a t  e s sen t i a l ly  the  same comments 
as those given e a r l i e r  concerning the  e f f ec t  of the  time of 
observation and t h e  film thickness apply here. The main 
difference occurs o f  course i n  the  time constant of t he  diffusion 
coupled adsorption process. 

The analyses given above a r e  of a very general  nature 
and ind ica te  t h a t  it may be possible  t o  determine k ine t i c  parameters 
spec i f ic  t o  the  adsorpt ion process of any gaseous reactant .  
experimental conditions may be chosen so t h a t  the  simplest of t he  
equations may be va l id  f o r  most of t h e  observation time, thus 

I 

The 
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f a c i l i t a t i n g  the  fFnal calculat ions.  
study which w i l l  be presented elsewhere for the  case i n  which the  
l i q d d  f i lm  i s  i n i t i a l l y  saturated with 
va l id  f o r  times during which equation (97 holds may be used i n  
the  calculat ion of r(t) thus increasing t h e  number of simultaneous 
equations. 

I n  addi t ion a theo re t i ca l  

as shows that t h e  equation . 

MPEFUMEWAL TECHNIQUE 

The explo i ta t ion  of t h e  equations given above 
necess i ta tes  an experimental determination of t h e  amount of 
reactant  adsorbed on the  electrode after a given exposure 
time. This i s  most e a s i l y  done by applying a po ten t io s t a t i c  
pulse t o  the system once the  electrode i s  immersed i n  t h e  
l i qu id .  In tegra t ion  o f  t h e  r e su l t i ng  current-time cwve  
allows F ( t )  t o  be evaluated. 
capacity current is grea t ly  minimized because of t h e  
po ten t io s t a t i c  nature  of the  experiments. 

Error due t o  double l aye r  

The ac tua l  experimental c e l l  w i l l  only b r i e f l y  
be described here. A de ta i led  descr ip t ion  w i l l  be given 
elsewhere. The electrode under study i s  placed i n  a non 
conducting disc ,  such as plexiglass  of te f lon ,  making up 
only a small port ion of th is  so tha t  the  time between in i t ia l  
and complete immersion of the  sample i s  negl igible  compared t o  
the  d isc  ro t a t ion  speed. "lie l e v e l  of the e l ec t ro ly t e  i n  t h e  
c e l l  may be varied so tha t  many d i f f e ren t  exposure times may be 
obtained. Provision i s  made t o  vary the  film thickness by means 
o f  a windshield wiper type arrangement. 
t o  d r y  the electrode with a su i t ab le  hydrophilic material. A 
platinum counter e lectrode of l a rge  surface area i s  placed so  
t h a t  t he  working electrode is i n  a uniform potent ia l  f i e l d .  Two 
aux i l i a ry  electrodes a r e  placed i n  t h e  c e l l  such tha t  any gas 
which enters  the  e l ec t ro ly t e  i s  immediately oxidized, thus 
ensuring tha t  t he  l i qu id  f i l m  i n i t i a l l y  contains no gaseous 
reactant.  A gold reference electrode found t o  be su i t ab le  for 
t h i s  work, i s  placed approximately 0 .1  m from t h e  sample 
allowing po ten t ios t a t i c  conditions t o  be obtained rapidly.  A 
saturated calomel e lectrode i s  a l so  placed in the  c e l l  for standard 
comparison purposes. 

The e lec t ronic  c i r c u i t  i s  shown in Fig. 1. The 
poten t ios ta t  P i s  a Tacussel P IT  type having an amplif ier  r i s e  
time of  about 30 nsec. In  the  work described below typ ica l  
i n  c i r c u i t  r i s e  times a r e  of the  order of 700 nsec. The 
oscil loscope employed i s  a TektronFx type 555 having a dual beam 
and a dual time base. Plug i n  un i t  L i s  used t o  record the  
potent ia l - t ime t r ans i en t  across t h e  working electrode, W, and 
the  reference electrode, S. Plug i n  uni t  D i s  used t o  record the  
current-time t rans ien t  across res i s tance  R. S, i s  a mechanical 
switch which operates as the  electrode t o t a l l y  en ters  t h e  solution. 
It serves t o  close the  b a t t e p j  c i r c u i t  which ac t iva t e s  the  
mercury wetted Clare re lay,  Sa,  thus allowing the  pulse t o  be 
applied.  
rela;- closes due t o  i t s  approximately 2 m see. reac t ion  time. 
Proper sync-hronizatior of t he  two time bases allows pulses o f  t h e  

I n  addi t ion it is possible 

It a l s o  t r i gge r s  t h e  oscil loscope s l i g h t l y  before the  

. . .  . .  
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type shown i n  Fig. 2 t o  be obtained. C i s  the  counter electrode. 

ETHANE ADSORPTION 

study was made o f  t he  adsorption o f  ethane on a platinum 
electrode.  Ethane w a s  chosen s ince it i s  a r e l a t i v e l y  simple 
hydrocarbon and because it shows s ign i f i can t  a c t i v i t y  a t  low 
temperatures. 
thus allowing comparisons t o  be made. 

prepared from reagent grade ac id  and t r i p l y  d i s t i l l e d  water. 
The electrode was,,highly ,polished platinum of 0.5 em2 area.  
i s  obtained from 
All measurements were made a t  25 10.2'C. 

measured i s  ac tua l ly  t h a t  due t o  t h e  adsorbed ethane pulses 
were applied t o  the  system i n  an Argon atmosphere. 
pu lse  voltage always a t t a ined  the same value as tha t  employed 
for t he  ethane oxidat ion although the  voltage difference was 
var iable .  T h i s  correc t ion  i s  rather important s ince there i s  a 
considerable amount of fa rada ic  current even in the  so-called 
double layer  region ind ica t ing  t h a t  t he  platinum electrode i s  
ce r t a in ly  not i n e r t .  The difference between the current-time 
t r a c e s  i n  argon and ethane may be seen in Fig. 3. 

To i l l u s t r a t e  t he  method described above a preliminary 

I n  addi t ion  it has been studied by o ther   worker^^^-^^ 

The experiments were car r ied  out usFng 5 N  phosphoric acid 

Ethane 
Societe  Air Licpide" and i s  of 99.99% puri ty .  

I n  o r d e r  t o  a sce r t a in  that  t he  quant i ty  o f  current 

The max imum 

The (shaded area  Fig. 3 )  charge, QE, corresponding t o  
various ethane adsorpt ion times is  shown I n  Fig. 4. It may be 
seen t h a t  t he  adsorpt ion times are r e l a t ive ly  long, however, they 
follow t o  a good approximation an exponential curve. This would 
appear t o  ind ica te  that  the  theory given above i s  obeyed. However, 
in tegra t ion  o f  equation (1) taking C ( 6 , t )  = const. would a l s o  
lead  t o  exponential time behavior. I n  order t o  decide between pure 
adsorption control ;  or coupled diff is ion-adsorpt ion control  
experhients were ca r r i ed  out i n  which t h e  film thickness w a s  varied. 
I n  every case and even for t h e  longest adsorption times QE depended 
upon the film thickness.  It thus appears tha t  the  adsorption of  
ethane i s  pa r t ly  d i f fus ion  control led even when r e l a t i v e l y  t h i n  f i l m s  
a r e  present. It i s  t o  be noted that this  does not ind ica te  that there  
would be a l i m i t i n g  d i f f i s i o n  control led current  for a l l  overpotentials 
i n  steady s t a t e  &el  c e l l  operation. It does, however, ind ica te  
that d i f fus ion  contr ibutes  t o  some extent t o  t h e  t o t a l  observed 
polar iza t ion  and that higher hydrocarbon s o l u b i l i t y  would 
g rea t ly  increase performance. 

of open c i r c u i t  po ten t i a l  with adsorption time can provide 
information concerning adsorption espec ia l ly  i f  surface conversion 
e x i s t s .  The experiments performed here give t h i s  data .  
Analysis of  the  potent ia l - t ime curves f o r  d i f f e ren t  exposure 
tunes indicates  t h a t  t he  observed voltage difference i s  a 
d i r e c t  measure of t h e  equilibrium po ten t i a l  s ince  t h e  voltage 
base l i n e  var ies  w i t h  adsorption time and, because of t he  se t  up 
of t h e  e l e c t r i c  c i r c u i t ,  can only  be due t o  d i f f e ren t  equilibrium 
po ten t i a l s .  A t y p i c a l  surve i s  shown in Fig. 5. It may be seen 

the re  appears t o  be a s l i g h t  a r r e s t  i n  t h e  curve a f t e r  
approximately 10 min. exposure time. !Phis f'unction i s  a measure of 

It has been shown5' t h a t  knowledge of the evolution 

1 

' I  

I 
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the  extent o f  e lectrode surface coverage and indicates  tha t  
there  a re  probably two su.rface species  one corresponding t o  low 
coverages and the  o ther  t o  high coverages. They are very probably 
re la ted  t o  the two peaks observed i n  t h e  voltafg sweep experiments 
Used  i n  siiiilar s tud ies  and reported by GiLrrian . 

I n  order t o  examine the  behavior of these surface 
species and t o  obtain some indicat ion of the  precesses which 
follow adsorp t im it i s  then necessary t o  examine the  current-  
tine curve obtained a f t e r  appl icat ion of  the  poten t ia l  s t ep  
function. 

evidenr. t h a t  the  charge t r a n s f e r  and desorption processes 
cake place much more rap id ly  than t h e  adsorption and 
conversion processes. Tklese l e t t e r  then comprise the  global  
r a t e  l imi t ing  s teps  i n  the oxidation of ethane a t  these 
terr:perstures and ind ica te  the importance of ca t a lys i s  i n  t h i s  
p r  3 C P  s 8. 

The f i r s t  observation i s  tha t  i t  appear f a i r l y  

Exploi ta t ion of the  current-time curves may be 
carr ied out i n  t:!e following way. If t h e  current i s  due to 
the  concentration o f  surface species  then t h i s  should be an 
exponentisl f inc t ion  of t i n e ,  thus: 

i = P- exp - fit (18) 

where 3. coritsins e lectrochenical  snd proport ional i ty  constants 
ant! 6 represents the time constant f o r  the  charge t r ans fe r  and 
desorption process. Semi logarithmic p lo t s  of the current 
time curves obtained i n  t h e  presence o f  e.i;hane show good 
l i n e a r i t y  a f t e r  the  f i rs t  100  p see. No such l i n e a r i t y  occurs f o r  
,'?.e curves obcained i n  an Argon atmosphere. These r e s u l t s  
indicace t h a t  d i f f i s i o n  control  i s  nonexistant.  

Examination of equation (18) shows t h a t  t he  intercept  
o f  Lhe semi logar i thn ic  p lo t  should r e s u l t  i n  consis tent  
value? for the  same surface species ( tak ing  i n t o  account 
.urface concentration and overpoten t ia l ) .  

Two s e t s  of va ues were obtained corresponding t o  
101:: 2nd high coversges (See Fig. 5 )  ind ica t ing  the presence 
o f  two surface species.  

L,. give sone indicacion of the p o t e n t i a l i t i e s  of t h e  methoc! 
described i n  :his work. i t  may be Peen that  a l s r g e  var ie ty  
of ~$,:.r,sz rr:a;y be 33tained and t h a t  i t  1% indeed possible  t o  
zeparste ::?e fwo global processes occurring i n  t h e  electrochemical 
oxida; im of  5gCrocarbons. The r e s u l t s  obtained a r e  less  
~ c t i ~ ~ o u s  2nd ii i s  hoped tsat h t u r e  work w i l l  e lucidate  the 
plienor.e::oz 0-r ca;alp:s i n  e lectrochenical  processes. 

The s tudy presented above i s  a preliminary one serving 
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LIST OF SYMBOLS 

r(t) = Surface concentration of  adsorbing species a t  t h e  t. 

= MaxFmum surface concentration of adsorbing species. 

= Adsorption r a t e  constant. 

= Desorption r a t e  constant.  

rm 

ka 

kd 

C (  6 ,  t )  = Concentration of adsorbing species at e l ec t ro ly t e -  

C ( X , t )  = Concentration of adsorbing species at a point X 

E = Diffusion coe f f i c i en t  of adsorbant. 

6 = L i q u i d  f i lm thickness and coordinate o f  e l ec t ro ly t e  
so l id  in t e r f ace .  

X = Point within l i q u i d  film. 

K = kar,/kd. 

S = Laplace transform parameter. 

C (  X, s )  = Concentration of  adsorbing species after Laplace 

e r f c  = Error f inc t ion .  

so l id  in t e r f ace .  

within the l i q u i d  f i l m .  

t ransformation a t  a point X within the l i q u i d  f i l m .  

e r f c  = 1 - erf .  

r ( s )  = Surface concentration of adsorbant after Laplace 

co = I n i t i a l  gas  concentration. 

% 

t r ans  format ion. 

= Charge corresponding t o  ethane surface concentration. 

I 

'I 
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Fig. 1 - Electronic c i r c u i t  f o r  appl icat ion o f  potential-t ime 
s tep  f inct ions.  

Fig. 2 - Upper curve : potential-the trace.  
Lower curve : current time t race.  Horizontal  
a x i s  1 m sec/cm, v e r t i c a l  axis 50 mV/cm. 
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Fig. 3 - Current-time t r a c e s  f o r  Argon and ethane. Shaded 
area represents  “E. 
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Fig. 4 - Variat ion of ethane surface coverage with time 
i n  adsorption phase. 
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Fix. 5 - Variation of equilibrium po ten t i a l  with coverage. 


